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ABSTRACT
This paper describes research and results in evolutionary
game theory. In particular we explore the evolution of mo-
bility with coordination among agents inhabiting a virtual
world where interactions are modelled using the Prisoner’s
Dilemma. We adopt an evolutionary game theory approach
and consider a spatially structured population where a lat-
tice grid is adopted. Agents’ actions and movements in the
game are controlled by their genotype which is subject to
evolutionary pressure; fitness is calculated as the payoff that
is accumulated by the agents in the simulation. A number of
experiments are presented which show that agents evolved
a form of coordination during the evolutionary simulation.
Experiments detailing the effect of varying the game ma-
trix and changing the initial clustering of the agents are also
discussed.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; J.4 [Computer Applica-
tions]: Social and Behavioural Sciences

General Terms
Theory, Experimentation

Keywords
Coordination, artificial life, prisoner’s dilemma, evolution

1. INTRODUCTION
In a range of domains in modern computing (multi-agent
systems, distributed systems, peer to peer networks etc.), is-
sues arise regarding coordination of nodes/agents in the sys-
tem. Oftentimes, it is desirable to allow autonomy of agents
but this renders centralised control and potential optimisa-
tion difficult. In order to fully understand these systems,
there is a need to explore emergent coordination in systems.
Many bodies of work have focused on cooperation and its
emergence. Nowak and May [1] first presented the idea that
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cooperation can be maintained if cooperative strategies play
with each other on a spatially structured model where agents
played with their neighbours. This domain has since been
well studied and many more ideas, theories, systems and ex-
perimental results have been presented. However, the area
of coordination has been much less studied and there are
relatively few studies that address spatial aspects of coordi-
nation among agents located in a virtual world.
Begun by John Maynard Smith, evolutionary game theory
has been studied since the 1980s where ideas from evolu-
tionary theory have been adopted into game theory [2]. We
adopt the most oft-studied game in evolutionary game the-
ory the classical Prisoner’s Dilemma [3] as our interaction
model. The game has attained popularity as it captures
nicely the conflict between individually rational choices and
those made for the common good. There have been many
works exploring aspects of the prisoner’s dilemma including
work on evolving strategies [4], exploring the effect of spatial
constraints including grids [1] and more complex topologies
[5]. However, in many social scenarios that we may wish to
model, participants often have more control over their inter-
actions.
More recent studies have considered the movement of in-
dividuals as an effective means of promoting cooperation.
Helbing and Yu [6] present a ‘migration’ model of a set
of spatially organised mobile agents playing the Prisoner’s
dilemma game. Agents can consider moving to a different
location in a specific ‘migration range’ based on whether the
new location is in a better ‘neighbourhood’. Ichinose et al
[7] investigate the coevolution of migration and cooperation.
Agents play an N-player Prisoner’s Dilemma game follow-
ing which they will move to a location in their (Von Neu-
mann) neighbourhood based on a unique probability vector.
Agents, both cooperative and non-cooperative, are evolved
to collectively follow or chase the cooperaters. The authors
highlight the importance of flexibility in the direction of mi-
gration for the evolution of cooperation.
This work differs from much previous research in that agents
are afforded a more expressive form of dynamism, in that,
agents can more explicitly chase desirable opponents and can
also avoid adverse interactions. We are less focused on the
evolution of cooperation in these games that in the emer-
gence of coordination among the agents which can facilitate
cooperation. Our model is more inspired by work in artifi-
cial life where moving populations of agents have been used
to explore a range of phenomena. This paper describes a
number of experiments using evolutionary computation to
evolve behaviours in populations of agents interacting in a
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Table 1: Payoffs for Prisoner’s Dilemma

simulated world. We explore the outcomes in the popula-
tion and demonstrate the emergence of cooperation in some
scenarios and coordination across a range of outcomes. The
main contributions are as follows: we present a model for
evolving coordination in a simulated world of agents play-
ing the prisoner’s dilemma; we present results showing that
coordinated movement is indeed evolved; we also show the
effect of clustering in the emergence of cooperation.

2. EXPERIMENTAL SET UP
This section presents an overview of the simulation set up.
We describe the simulated world, the agents and their be-
haviours, and the evolutionary set up. The agents inhabit a
simple grid-like world where each cell on the grid can host
one agent. Each agent may interact with agents located in
a neighbouring cell where the notion of a Moore neighbour-
hood is used. Each agent may also view agents located in
this neighbourhood and can move to an adjacent cell.
Each agent is represented by a genotype comprising of seven
bits. The first bit determines how the agent will interact in
the game: cooperate or defect. The remaining bits deter-
mine how an agent will move. If an agent encounters a co-
operator, they have a set of potential actions. These actions
are as follows: remain where they are, move randomly, fol-
low the cooperator or flee from it. Similarly these potential
actions are mirrored for when an agent encounters a defec-
tor. The final two bits are used to determine actions for
when an agent encounters both a defector and a cooperator.
The actions are: flee from both; follow both; follow the co-
operator and flee from the defector and the converse action
(flee from the cooperator and follow the defector). During
simulation, each potential action of an agent is determined
by the genotype.
Each interaction involves pairs of agents participating in the
Prisoner’s Dilemma, which is a two player zero sum game
where each player has a choice: to either cooperate or defect.
If both agents cooperate, then both agents receive the payoff
for mutual cooperation. However, there is a temptation to
defect against a cooperator and receive a high payoff (temp-
tation to defect). However, if both defect, they both receive
a payoff worse than that received for mutual cooperation.
Because betraying a partner offers a greater reward than
cooperating with them, all purely rational, self-interested
prisoners would betray the other, and so the only possible
outcome for two purely rational prisoners is for them to be-
tray each other [3]. Table 1 shows one commonly adopted
game matrix where the values pairs refer to the payoffs re-
ceived by the row and column player respectively.
The strategies that the population of agents can adopt were
explored by Genetic Algorithms (GA). GAs offer an ap-
proach to search a complex space, and update agent be-
haviour based on a fitness score. Each agent is represented
by an array of seven values, their genotype; this code deter-
mines the actions of the player; their phenotype. Each gen-
eration involves allowing players to move according to their
genotype, interact with any neighbours following movement.

Each interaction causes a change to their score. After a num-
ber of iterations, the accumulated score is taken as a mea-
sure of fitness. Agents for the next generation are initially
selected based on this fitness score (the higher the better).
Agents are also subject to GA operators of crossover and
mutation (at pre-defined rates) to allow for more diversity
in the population. The agents are evolved in this manner
over a number of generations, and we measure levels of co-
operation and the evolved behaviours over the evolutionary
run.
There are a number of research questions under examina-
tion in this work. We are particularly interested in explor-
ing whether coordinated movement can be evolved where
agents evolve to cluster together to promote cooperation or
not. We explore a number of research questions:

• Given the ability to evolve movement together with
action in the game, will cooperation emerge?

• Given the ability to evolve both movement and actions,
will coordination emerge?

• How robust will be any evolved cooperation to changes
in the payoff matrix?

• If agents are clustered together (to different levels) at
the start of generations will cooperation be favoured?

3. EXPERIMENTAL RESULTS
In these experiments, the following parameters are used in
each experiment. For these experiments, a 50 x 40 grid world
is created and populated with 100 prisoners, initially the co-
operator to defector ratio is 1:1. Simulations are run for 50
generations, and prisoners will take 200 turns each genera-
tion. The simulator will be run at least 10 times for each
experiment. The payoff matrix used is that described earlier,
unless otherwise noted. Tournament selection of size two is
adopted, crossover of 70% and 1% mutation. Any other pa-
rameters specific to a particular experiment is documented
for that experiment.

3.1 Experiment 1: Evolution of Coordination
The aim of this experiment is to explore and analyse be-
haviours in the population of agents. We wish to observe
the evolution of the prisoners’ behaviours (both for the in-
teraction and their movement) with evolutionary pressure
being placed on both behaviours. In this experiment, we
record the fitness of the population over time and the be-
haviours of each prisoner at each generation.
We include a number of plots to illustrate the evolution of
behaviours reflecting coordination among agents. Similar
coordinated behaviour was found for both cooperators and
defectors. The plots show which behaviours evolved given
some of the potential scenarios a cooperator may find them-
selves in. Figure 1 shows the evolved behaviours when a
cooperator encounters a cooperator. The behaviour ‘follow’
dominates quite quickly, showing that for cooperators, they
learn to follow each other and coordinate their movement in
order to gain high rewards for increased interactions involv-
ing mutual cooperation.

In Figure 2, we again see that cooperators quickly coordi-
nate their movements for scenarios where a defector is en-
countered. The ‘flee’ behaviour quickly dominates as agents



Figure 1: Evolved behaviours for cooperators when
encountering a cooperator

Figure 2: Evolved behaviours for cooperators when
encountering a defector

attempt to avoid exploitation by those who defect. The plot
also shows the movement ‘random walk’ where the agents
chose a random move upon seeing a defector does not die
out. There are two reasons for this; firstly, the behaviour
is reasonably good for a cooperator encountering a defector
as it will in most cases lead to the agent fleeing from the
defector and secondly following a number of generations for
this run, the defectors have died out so there is no longer a
selective pressure on these movements.
When a cooperator encounters both cooperators and defec-
tors, the results show that they quickly evolve to follow co-
operators and flee from defectors. This leads to agents that
cooperate when clustering together resulting in a form of
emergent coordination. These graphs show the behaviours
of cooperators for just one run of the simulation where co-
operation prevailed.
As agents are placed randomly in the grid at the start of
each generation, there can be an impact on the outcome of
the evolutionary run. Different initial positioning of agents
can lead to a benefit for either cooperators or defectors and
can affect the evolutionary trajectory. In order to get a
more complete view of the evolution, we run the simula-
tion a number of times and present results on the outcomes.
For 20 simulations, the evolutionary process resulted in co-
operative outcomes 13 times (65%) and 7 times (35%) in
non-cooperative outcomes. Notwithstanding, the outcome

of the overall simulations, the same behaviours were evolved
across all scenarios, agents evolved to move towards coop-
erators and to flee from defectors. This was true for both
cooperators and defectors as both gained in fitness from in-
teracting with cooperators and both achieved reduced fitness
from defector interactions.

3.2 Experiment 2: Varying the Payoffs
The payoff matrix used in the prior experiments have been
used in many previous works. However, we can change the
payoffs while still maintaining the dilemma. For the pris-
oner’s dilemma to hold, the temptation to defect (T) must
be greater than the reward to mutual cooperation (C), which
in turn must be greater than the reward for mutual defec-
tion (D) which must be greater than the sucker’s payoff (S)
when one cooperates and the opponent defects. We can vary
this value while maintaining the above constraints. In this
experiment, we vary the score available for mutual defec-
tion. By reducing the score, there is more advantages to
be gained through cooperation and conversely if we increase
the score for mutual defection to be close to that for mutual
cooperation, defection should be favoured. We re-run the
same experiments in section 3.1, but with different scores
for mutual defection.
We tabulate the number of outcomes that result in coop-
eration as we change the score for mutual defection, run-
ning each simulation 20 times. This is summarised in Table
2. As can be seen from the table, decreasing the payoff to

Mutual Defection Score Cooperative Outcomes
0.5 18
1.0 13

1.125 13
1.1815 10
1.25 9
1.5 7
2.0 6
2.5 6
2.99 6

Table 2: Number of cooperative outcomes for dif-
ferent mutual defection rewards

0.5, increases the number of cooperative outcomes and as
the payoff for mutual defection tends to 3, (the payoff for
mutual cooperation), the number of cooperative outcomes
decreases. In these simulations, the same evolved coordi-
nated movement was witnessed for lower scores for mutual
defection; agents learned to follow cooperators in increase
their fitness and to flee defectors. As the payoff for mutual
defection increased, defectors gained little from following co-
operators over defections or from fleeing from defectors, and
different behaviours were evolved. This helps explains why
there were still several cooperative outcomes. Cooperators
evolved to follow cooperators and avoid defectors. Defectors
did not have the same selective pressure on these behaviours
and were content to have interaction with fellow defectors.

3.3 Experiment 3: Clustering Agents
The aim of this final set of experiments is to explore and
analyse the effects of clustering on the outcome of the sim-
ulation. We hypothesise that it is the clustering of cooper-
ators that leads to cooperative outcomes. In the previous



experiments, cooperators learn to follow other each other
leading to a clustering of these cooperators. In order to
more clearly explore the effect of this emergent coordination
and clustering, we enforce a level of clustering at the start
of each generation so as to control the amount of cooperator
interactions.
In these experiments, we place agents with a level of ran-
domness but control the mix between cooperators and de-
fectors. In an extreme case, we place all the cooperators and
no defectors in a certain region of the grid (top left quar-
ter of cells) and place the defectors in the remainder of the
grid in a random manner. This ensures that cooperators
will be clustered together thereby increasing the number of
mutually cooperative interaction and reducing the probabil-
ity of exploitation by defectors. We then vary the level of
clustering by swapping some cooperators from the coopera-
tive cluster with the surrounding defectors. We run a set of
experiments for each of these initializations. We return to
using the standard payoff matrix as defined in Table 2. In
this experiment the ratio of cooperative to non-cooperative
simulation outcomes will be measured after each change in
the level of clustering. Having run the simulator multiple
times (50) we see that cooperation, with cooperative pris-
oners clustered together in the top left of the grid, is highly
robust.

Defectors Swapped Cooperative Outcomes
0 98%
5 90%
10 86%
15 60%
20 50%
25 18%

Table 3: Cooperator success with variation in the
levels of Mixing

Table 3 shows us the proportion of simulations that resulted
in a population of defectors as we changed the level of mixing
between the cooperators and defectors. In a homogeneous
environment, a simulation will result in a cooperative vic-
tory 98% of the time, with defection only winning out in
2% of the simulations; this is a dramatic increase compared
to previous experiments. The cluster of cooperators itself
is also fairly robust; it can easily withstand the defectors
introduced at mixing levels of 5 and 10 with the vast major-
ity of simulations resulting in a cooperator win. When the
number of defectors injected into the cluster is increased we
can increase the probability that a simulation will result in
a defector win.

4. CONCLUSION
This paper presented a series of results in artificial life sim-
ulations of cooperation and coordination. We show that by
allowing agents to evolve both their actions and their move-
ments, we can induce both cooperation and coordination in
an artificial world. The results show that agents learn to
choose to follow cooperators and flee defectors; this leads
to an emergent form of coordination for cooperators who
attempt to follow each other while fleeing defectors which
increases their frequency of cooperative interactions. The
latter experiments show the effect of changing the payoff ma-
trix to reflect different balances between mutual cooperation

and mutual defection. The final experiment shows explicitly
the effect of the coordination of cooperative agents, which is
emergent in the early experiments. In the final experiment,
in an effort to illustrate its effect we explicitly enforce this
clustering and show it has a huge impact on the outcome.
In conclusion, this paper illustrates our success in the evolu-
tion of mobility with coordinated behaviour. A population
of cooperative agents has been evolved with the ability to co-
ordinate themselves spatially, forming clusters, giving them
a competitive edge over the self-interested, non-cooperative
defectors.

5. CURRENT & FUTURE WORK
Extensions to this work has included making changes to the
simulator to move from a simple grid to a toroidal shaped
world, where the sides and edges of the grid connect. This
eliminates any potential edge effects that may restrict the
movement or influence the evolutionary trajectory of the
agents. An algorithm was also developed to more formally
analyse the levels of coordination present in the popula-
tion and investigate the emergent hypothesis that cooper-
ator clustering leads to a cooperative outcome. It explicitly
measures the frequency, size, and cohesion of clusters in the
grid at various time steps during a simulation.
Future work will involve attempting to predict the outcome
of a simulation based on examination of the initial position-
ing of agents. It will also involve exploring other interaction
models to capture more complex interactions. In particu-
lar we will explore an extension to the Prisoner’s Dilemma
which allows participants to abstain from playing the game.
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