
Emiliana Murgia
emiliana.murgia@unige.it
Università di Genova
Italy

Monica Landoni
monica.landoni@usi.ch
Università della Svizzera Italiana
Switzerland

Maria Soledad Pera
m.s.pera@tudelft.nl
Web Information Systems - TU Delft
The Netherlands

Theo Huibers
t.w.c.huibers@utwente.nl
University of Twente
The Netherlands

ABSTRACT

In this work, we discuss lessons learned that resulted from an ongoing effort focused on advancing knowledge pertaining to online information access for children in the classroom context, as nowadays digital literacy is essential to connect with others and be an active part of the community. We aim to provide equal access to information for children of all ages participating in formal and informal learning. Adopting a multidisciplinary, international viewpoint, we have actively involved children and teachers as experts in designing, developing, and evaluating information access systems, like search and recommender systems. Along the way, we bring awareness of other concepts deeply intertwined with information access: information pollution and the pervasive nature of AI systems like ChatGPT that are known to be used to access information, even if they were not designed for it.

CCS CONCEPTS

• Social and professional topics → Children;
• Applied computing → Education;
• Information systems;

KEYWORDS

children, education, information access, multidisciplinary research

ACM Reference Format:


1 EXTENDED ABSTRACT

One way computing can effectively connect everyone is by providing equal access to online information to all, starting with children. Since 2018, we have dedicated research efforts to exploring the world of children and information access in an educational setting, using a multidisciplinary approach that includes experience in Education, Information Retrieval, Child-Computer Interaction, and Industry [5–8, 10, 12]. Here, we share lessons from our ongoing work on a crucial digital literacy skill: how children use search and recommendation technology in the classroom, regardless of the teaching modality (i.e., in-person, remote, or hybrid). We concentrate on findings emerging from studies in which we (i) engaged with two groups of primary school children speaking different languages on curriculum-related inquiry tasks [1, 10], (ii) investigated the differences between children’s search behaviour when interacting with a classic graphical user interface (GUI) and a vocal assistant [7], and (iii) observed children’s interactions and perceptions of recommender systems [11, 13]. During these studies, we identified new related challenges requiring immediate attention: how to deal with information pollution [9] and the use of AI systems based on generative Large Language Models (LLMs) as sources of information, when they might not be [3]. Moreover, we gathered evidence of the essential role played by the ‘expert-in-the-loop’ often tasked with facilitating the use of these technologies: the teacher [6, 12].

Highlights include understanding the role emotions play in engaging children with search tasks [10] and how vocal assistant and GUI have comparable usability while fostering different behaviours [7]. Emotions, whether joy or fear, produce a keen and more productive search effort with longer sessions and query reformulations. Children expressed that finding the correct answer to questions tinted with fear could contribute to its dissipation by resolving the problem that caused it. Interacting with a vocal assistant influenced children’s ability to stay focused on the search task and avoid distractions; GUI instead encouraged children to browse and explore the search space beyond the assigned task. We also looked at how children reacted when offered recommendations as a guide to good sources in the search engine result pages (SERP) [13]. We recognised how critical it was for them to grasp where the suggestions came from, revealing trust and explanations as crucial elements to consider when designing recommendation technology for the classroom. We expanded upon these findings through a literature review, which allowed us to document the challenges inherent to recommendation technology that children could utilise unobtrusively to assist their learning [11]. Finally, we ran a two-stage study on how children imagine a search companion pre and post-Covid-19 and learned that children’s requirements have changed [1]. Hence we discourage the research community...
from building on old assumptions and instead revisit explorations
to capture current needs and open challenges.

Children’s roles in collaborative design must be revisited, as
much as the power balance in inter-generational research teams.
Lastly, the growth of familiarity with technology opens a window
of opportunity for educational experts to use it in teaching more
extensively and seamlessly.

With the rise of ChatGPT (https://chat.openai.com/), considering
the unprecedented speed with which this application spread among
users, we enlarged our interest in LLMs. We know that ChatGPT is
not explicitly designed to enable information seeking, less so being
used in an educational context with children. ChatGPT itself, when
asked to explain the possible benefits of its use in the classroom,
answers, “(...) Another potential benefit is that I can be used as a
research tool. I can help students find and analyse information for
their assignments and projects, by providing them with the rele-
vant resources and help them understand the material. (...)”. That
said, we are working on a preliminary study to determine if and
how ChatGPT can play a role in supporting teachers and students
in providing responses adapted to the specific needs of children
and helping them to understand the concepts familiar to the cur-
riculum. As we deal with a vulnerable user group, it is implied
that children are stakeholders who require caution and protection
when designing technologies targeted to them. We posit that (AI)
technologies should respond to the child as a whole and emulate
teachers’ approach when supporting students by adapting their
actions to context and traits descriptive of individuals. Embracing
teachers’ perspectives, we identified the challenges of incorporat-
ing existing information access technology in the classroom as this
needs to support teachers catering to the broad range of cognitive
and cultural backgrounds that impact how children learn [6, 12].

In [9], we outlined how information pollution affects children
and hinders their right to access information. While seeking infor-
mation, children may encounter irrelevant resources that do not
match their needs or interests, leading to frustration and confu-
sion. They may inadvertently find misleading, harmful or distracting
resources; or even be presented with resources not matching their
age or development, including inappropriate content. These are
some of the reasons evincing the urgent need to consider the pres-
ence, in the web search ecosystem, of content with harmful or
poisonous effects—the dictionary definition of pollution—that can
prevent children from accessing genuine information online [4, 14].

Accessing and selecting resources presented by search engines or
recommender systems, as well as engaging with responses provided
to inquiries posted to AI systems based on LLMs, like ChatGPT,
involves acquiring and practising numerous skills [2, 4]—all essen-
tial building blocks of digital literacy, more so when the goal is to
leverage retrieved resources for learning purposes. This is why we
believe the understanding we gain from studying children’s infor-
mation access needs and behaviour in the classroom can be applied
to informal learning environments—and even other user groups.

In light of this, and acknowledging that children, immersed in today’s
digital society, have a right to information access [15], our goal is to
establish a diverse and inclusive community of researchers and prac-
titioners passionate about and dedicated to ensuring equal access
to information for children of all ages involved in formal and infor-
mal learning. This includes researchers and practitioners focused
on developing technologies, such as text simplification generation,
recommendation generation, or adaptive interfaces, that can en-
able this vision, in addition to the searchers themselves and the
stakeholders who are at the epicentre of educational settings where
information access takes place, like libraries, museums, schools, and
universities. This would advance knowledge in the area and, most
importantly, improve all learners’ education quality by creating a
more equitable learning environment. Unequal access to informa-
tion has a negative impact on children’s academic trajectory; proper
support and resources can empower them to reach their full poten-
tial and succeed in their academic pursuits and beyond. Joining this
community would be an opportunity to positively impact the lives
of children and contribute to building a brighter future for all. Let
us come together and work towards a common goal of providing
equal access to information for all children in educational settings
as a way to exploit the power of computing to connect everyone.

REFERENCES

[1] Mohammad Aliannejadi, Theo Huibers, Monica Landoni, Emiliana Murgia, and
Maria Soledad Pera. 2022. The Effect of Prolonged Exposure to Online Education
on a Classroom Search Companion. In Experimental IR Meets Multilinguality,
Multimodality, and Interaction: CLEF. 62–78.
[2] Susan Danby and Christina Davidson. 2019. Webs of relationships: Young chil-
dren’s engagement with Web searching. In The Routledge handbook of digital
[3] Faust Faazi, Laros Tshubueru, Ferdinandus Sampe, Abu Muna Amaududi Aussat,
and Heliza Rahmania Hatta. 2023. Analysing the Role of ChatGPT in Improving
Student Productivity in Higher Education. Journal on Education 5, 4 (2023),
14886–14891.
Z Engages with Online Information. In Proceedings of the 2023 CHI Conference
We’ve only just begun: Children searching in the classroom. In 1st Joint Confer-
ence of the Information Retrieval Communities in Europe (CIRCLE), Vol. 2621.
Ethical implications for children’s use of search tools in an educational setting.
[7] Monica Landoni, Davide Matteri, Emiliana Murgia, Theo Huibers, and
Maria Soledad Pera. 2019. Sonny, Cerca! evaluating the impact of using a vocal
assistant to search at school. In Experimental IR Meets Multilinguality,
My Name is Sonny, How May I Help You Searching for Information?. In 18th
How does Information Pollution Challenge Children’s Right to Information
Access?. In 3rd Workshop on Reducing Online Misinformation through Credible
Inside out: Exploring the emotional side of search engines in the classroom.
In Proceedings of the 28th ACM conference on user modeling, adaptation and
personalization. 136–144.
[11] Emiliana Murgia, Monica Landoni, Theo Huibers, Jerry Alan Fails, and
Maria Soledad Pera. 2019. The seven layers of complexity of recommender
systems for children in educational contexts. In ComplexRec Workshop, co-located
Teachers in a Searchable World: Findings from an Introductory Survey. In
Teachers in a Searchable World: Findings from an Introductory Survey. In
Proceedings of the 18th ACM Conference on Recommender Systems Late-breaking
Results, Vol. 2449. 5–9.
With a little help from my friends: Use of recommendations at school. In
Proceedings of the 28th ACM conference on user modeling, adaptation and
personalization. 136–144.
[14] Mohammad Aliannejadi, Theo Huibers, Monica Landoni, Emiliana Murgia, and
Maria Soledad Pera. 2022. The Effect of Prolonged Exposure to Online Education
on a Classroom Search Companion. In Experimental IR Meets Multilinguality,
Multimodality, and Interaction: CLEF. 62–78.
[15] Mohammad Aliannejadi, Theo Huibers, Monica Landoni, Emiliana Murgia, and
Maria Soledad Pera. 2022. The Effect of Prolonged Exposure to Online Education
on a Classroom Search Companion. In Experimental IR Meets Multilinguality,
Multimodality, and Interaction: CLEF. 62–78.

womENCourage ’23, September 20-22, 2023, Norway
Murgia, et al.