
The cplint Probabilistic Logic Programming System

Elena Bellodi,
Evelina Lamma

 Department of Engineering
 University of Ferrara

 Ferrara, Italy
 {blllne2, lme}@unife.it

Riccardo Zese,
Giuseppe Cota

Department of Engineering
 University of Ferrara

 Ferrara, Italy
 {zsercr,ctogpp}@unife.it

Fabrizio Riguzzi
 Department of Mathematics and

Computer Science
 University of Ferrara

 Ferrara, Italy
 rzf@unife.it

Probabilistic Logic Programming (PLP) [1] is a probabilistic
programming approach that uses logic programming as the
underlying language. With respect to probabilistic programming
based on imperative or object-oriented languages, PLP offers the
additional features of declarativity and ease of knowledge
representation, making it a valid tool for Statistical Relational
Learning and, more generally, Statistical Relational Artificial
Intelligence. In fact, PLP is very useful for modeling domains with
complex and uncertain relationships among entities, through logic
and probability theory respectively. This poster would like to
present our system cplint and our web application cplint
on SWISH [2] for performing inference and learning in such
domains by means of Probabilistic Logic Programming.
Sato’s distribution semantics [3] emerged as one of the most
prominent for giving a meaning to PLP, being adopted by many
languages among which Logic Programs with Annotated
Disjunctions (LPADs) [4]. A probabilistic logic program without
function symbols defines a distribution over normal, non-
probabilistic logic programs called worlds and the probability of a
query is obtained from the joint distribution of the query and the
worlds by marginalization. The distribution over worlds is defined
by encoding choices in clauses. For example, in LPADs, the
clause heads are disjunctions and each disjunct is annotated with a
probability, as in the following program that models information
on the laboratory examinations of hepatitis B and C infected
patients (http://www.cs.sfu.ca/~oschulte/jbn/dataset.html). Here
the goal is to predict the hepatitis type of a patient, so the “target
head” in the clauses is type(patient,type) where type can be type b
or type c:
type(A,type_c):0.770:-b_rel11(B,A),fibros(B,C),
b_rel13(D,A).
type(A,type_b):0.403:-b_rel11(B,A), fibros(B,C).
The clauses’ body contains literals relative to results of biopsy,
information on interferon therapy, results of out-hospital
examinations, results of in-hospital examinations. The first clause
states that a patient A has a chance of having type c hepatitis of
77% if the body holds (the atoms are true in the knowledge base).
Continuous random variables have been added to the language [5]
by means of clauses of the form a : Density ←Body, where
Density is a special atom identifying a probability density on
variable Var of atom a and Body (optional) is a regular clause
body. For example, consider a factory with two machines a and b.
Each machine produces a widget with a continuous feature

distributed as a Gaussian with a given mean and variance. The
widget then is processed by a third machine that adds a random
quantity to the feature distributed as a Gaussian:
widget(X) :- machine(M),st(M,Z),pt(Y),{X=:=Y+Z}.
machine(a):0.3;machine(b):0.7.
st(a,X): gaussian(X, 2.0, 1.0).
st(b,X): gaussian(X, 3.0, 1.0).
pt(X): gaussian(X, 0.5, 1.5).
One can compute what is the distribution of the feature, or the
distribution of the feature given that the widget was produced by
machine a, by taking S samples with rejection sampling and
drawing a histogram with NB bins, and many other queries.
cplint is a suite of algorithms for performing (exact and
approximate) inference and learning with LPADs including
programs that encode continuous random variables. It can be used
as a local application in one of the Prolog compilers Yap, XSB or
SWI-Prolog, or as a web application, cplint on SWISH
(http://cplint.eu). It has extensive graphical capabilities, either
using R or C3.js. For example, it can draw ROC and PR curves.
cplint on SWISH manages a lot of application domains:
reasoning about actions, random walks, marketing, natural
language, biology, genetics, model checking, medicine, games,
social networks, filtering, Bayesian estimation, regression, tools
diagnosis models, bitcoin protocols, but can be applied to any
complex real world domain characterized by imprecise
knowledge.

REFERENCES
[1] F. Riguzzi, Foundations of Probabilistic Logic Programming, River
Publishers, 2018.
[2] F. Riguzzi, E. Bellodi, E. Lamma; R. Zese,; G. Cota, 2016.
Probabilistic logic programming on the web. In SOFTWARE, PRACTICE
AND EXPERIENCE, vol. 46 (10), pp.1381-1396.
[3] T. Sato. 1995. A Statistical Learning Method for Logic Programs with
Distribution Semantics. In Logic Programming, Proc. of the Twelfth Int.
Conference on Logic Programming, 1995, Leon Sterling (Ed.). MIT Press,
Cambridge, Massachusetts, 715–729.
[4] J. Vennekens, S. Verbaeten, and M. Bruynooghe. 2004. Logic
Programs With Annotated Disjunctions. In 24th Int. Conference on Logic
Programming (ICLP 2004) (Lecture Notes in Computer Science), Vol.
3131. Springer, Berlin Heidelberg, 431–445.
[5] S. Michels, A. Hommersom, P. J. F. Lucas, and M. Velikova. 2015. A
new probabilistic constraint logic programming language based on a
generalised distribution semantics. Artif. Intell. 228 (2015), 1–44.

