
SolvingQuasi Block Diagonal Linear Systems
Viviana Arrigoni

arrigoni@di.uniroma1.it
Department of Computer Science
Sapienza University of Rome, Italy

Annalisa Massini
massini@di.uniroma1.it

Department of Computer Science
Sapienza University of Rome, Italy

ABSTRACT
A hybrid MPI/OpenMP solver is implemented for a class of sparse
linear systems that we call quasi block diagonal. The system uses
specific formats for sparse matrices and implements preconditioned
Jacobi in order to reduce memory storage requirements. We com-
pare our solver with solvers available in HPC libraries.

KEYWORDS
Computational Linear Algebra, Sparse Matrices, MPI, OpenMP

1 INTRODUCTION
Sparse matrices arise from problems in several fields, as they re-
sult from the discretization of partial differential equations (PDEs)
when modelling phenomena spanning over the widest scientific
range. In engineering, Finite Element Model (FEM), see e.g., [3], is
widely used to model structural components of engines through
large and sparse matrices having denser blocks distributed along
their diagonal. We refer to them as quasi block diagonal matrices.
They represent the coefficient matrices of the PDEs that model the
system under study, and that are discretized and solved numerically
integrating multiple large, sparse linear systems. For this reason,
in the last decades many efforts have been devoted to devise fast
linear solvers that would adapt to the most recent parallel architec-
tures, and that would take advantage of specific sparsity patterns.
Here, we present a hybrid solver that exploits the preconditioned
Jacobi method to increase sparsity, thus allowing very effective
memory storage, also thanks to specific sparse formats. In our im-
plementation, we use both MPI and OpenMP. We test our solver
on a cluster.

(a) (b) (c) (d)

Figure 1: Sparsity patterns of matrices: (a)A, (b)D, (c)R, (d) S .

2 ALGORITHM AND IMPLEMENTATION
Let Ax = b be the linear system to solve, where A is quasi block
diagonal, meaning that it can be represented as the sum of its block
diagonal part,D, and its off block diagonal part,R (see Figures 1a-1c),
as described in [1], taking inspiration from the factorization phase
of SPIKE algorithm, see e.g., [2]. The linear system is preconditioned
by D−1, becoming D−1Ax = D−1b, that is (I +D−1R)x = D−1b. We
denote S = I + D−1R, G = D−1R and f = D−1b. The sparsity
patterns of D and G do not intersect, and G is formed by small
columns (see Figure 1d). The preconditioned linear system Sx = f
has provable convergence properties and it is solved using the

Jacobi algorithm, that can be suitably implemented in hybrid multi-
processors/threading architectures.

We assume we have as many processors as the number of diago-
nal blocks of A. To each processor p we assign a diagonal block Dp
in full format, and the elements of R having the same row indexes
as DP , Rp , in coordinate format. Every processor p computes D−1

p
(using the Lapack routine *gesv), Sp = D−1

p bp (using the BLAS
routine *gemv) and Sp = D−1

p Rp (using OpenMP). These opera-
tions can be computed in perfect parallelism since the inverse of D
is D−1 = diaд(D−1

0 , . . . ,D
−1
k−1), and G =

[
D−1
0 R0; . . . ;D−1

k−1Rk−1
]
.

Only theG component of matrix S is stored using a simplified Ell-
pack format, where the column indexes matrix is reduced to be a 1D
array, exploiting the sparsity pattern of S . Afterwards every proces-
sor informs the others about what components of the approximated
solution vector x̃ it needs at each iteration of the Jacobi algorithm.
Then, each processor p applies the Jacobi algorithm to compute
its portion of the approximated solution x̃p , and exchanges the
required entries of x̃p with other processors.

3 PERFORMANCE EVALUATION
We tested our solver on Galileo cluster, Cineca (Bologna, Italy). The
speed-up with respect to the sequential implementation of precon-
ditioned Jacobi is depicted in Figure 2, and highlights the strong
scalability and the negligible communication cost of our solver.
Figure 3 shows the outperforming results in terms of execution
times of our hybrid solver in comparison with ScaLapack and Intel
MKL pardiso solvers for clusters, considering blocks of size 1000
and matrices Rp having 100 nonzero entries each.

n = 4000 

P = 4

n = 9000 

P = 9

n = 16000 

P = 16

Matrix size, n. Number of processors, P

0

500

1000

S
p
e
e
d
-u

p

Figure 2: Speed-up wrt
sequential implementation.

n = 9K 

P = 9

n = 16K 

P = 16

n = 36K 

P = 36

n = 49K 

P = 49

n = 81K 

P = 81

Matrix size, n. Number of processors, P

10
0

10
1

10
2

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

HPJ

ScaLapack

Pardiso

Figure 3: Comparison with
ScaLapack and Intel MKL par-
diso solvers.

The proposed hybrid MPI/OpenMP solver minimizes memory
occupation and communication costs, thus outperforming state-of-
the-art solvers integrated in HPC libraries.

REFERENCES
[1] Manguoglu M. Bolukbasi, E. S. 2016. A multithreaded recursive and nonrecur-

sive parallel sparse direct solver. In Advances in Computational Fluid-Structure
Interaction and Flow Simulation. Springer, 283–292.

[2] Sameh A. Polizzi, E. 2006. A parallel hybrid banded system solver: the SPIKE
algorithm. Parallel computing 32, 2 (2006), 177–194.

[3] Y. Saad. 2003. Iterative Methods for Sparse Linear Systems: Second Edition. Society
for Industrial and Applied Mathematics.


	Abstract
	1 Introduction
	2 Algorithm and implementation
	3 Performance evaluation
	References

