Thus, FHE concerns an encryption algorithm E. The proposed algorithm is based on modular arithmetic in the form $i=1,...,k$. We compute a ciphertext C and are required to be inevitable in \mathbb{Z}_m. Secret vectors s_i are randomly chosen elements. Key Generation is the process of generating the keys.

PROPOSED CRYPTOSYSTEM

Basics FHE supports arbitrary computation over ciphertexts with no need to decrypt and perform computations over original data. Thus, FHE concerns an encryption algorithm E and a decryption algorithm D, such that $C_1 = E(X_1), C_2 = E(X_2)$ and $D(f(C_1, C_2)) = f(X_1, X_2)$, where C_1 and C_2 are ciphertexts, X_1 and X_2 are plaintexts, f - arbitrary function.

Key Generation The main components of the secret key are modulus M, vector m of k relatively prime moduli, the set of vectors $s_i, \forall i = 1, \cdots, k$, permutation matrix P_{C}, the number r of vectors of randomly chosen elements. Secret vectors s_i are chosen arbitrarily and are required to be inevitable in $\mathbb{Z}_m, j = 1, \cdots, l$.

Encryption The inputs are original message X, set of multiplication rules. X is represented as a vector (x_1, x_2, \cdots, x_l), s.t. $X = \sum_{i=1}^{l} x_i \ mod \ M$. Then the secret key vectors (s_1, \cdots, s_k) is applied to compute a ciphertext $C = (c_1, c_2, \cdots, c_k)$ as $c_i = s_i \cdot X \ (mod \ (m_i))$, for $i=1,\cdots,k$.

Decryption To restore the ciphertext from permutation we apply P_{C} matrix first: $C = P_{C}C$. Then, apply the inverses s_i^{-1} of the secret vectors s_i for decryption and use Chinese remainder theorem [1] to find X, that solve the system of equations of type $\hat{X} = (c_i \cdot s_i^{-1}) \ mod \ m_i$.

Multiplication The multiplication of two ciphertexts leads to the increase of the result’s size about 4 times. To solve this problem we first introduce a set of vectors $(\zeta_{ij}, \zeta_{ij}^*)$ with bases (ζ_{ij}^b) to represent entries of ciphertext c_{ij} and c_{ij}^* as products $(\zeta_{ij} \cdot \zeta_{ij})$. Then the public key sent to the server γ, is estimated as $\gamma_{ij} = (\zeta_{ia}^b \cdot S_1^{-1}(mod_m)) \cdot (\zeta_{ib}^b \cdot S_1^{-1}(mod_m))$.

CONCLUSION

In this research, we propose the FHE scheme which is well suited for the efficient implementation on the computer. The use of modular arithmetic prevents overflow involving legitimate computation range. Multiplication tables address the problem of exponential data growth and allow to work with rational numbers, thus increasing the strength of the encryption scheme. Domingo-Ferrer’s FHE scheme is turned out to be the special case of the scheme proposed in this paper. Both schemes involve random splitting of the original number into small secret values $\in \mathbb{Z}_m$. However, instead of choosing a single modulus m and a vector \bar{s} of invertible values as a secret key, our scheme uses the secret vector of k moduli m_i and a set of k secret vectors s_j (invertible in \mathbb{Z}_{m_i}). Thus, our scheme is more secure as it requires a number to be represented as a matrix of values in the rings with the different bases m_i. Our scheme generalizes Domingo-Ferrers’ scheme to multivariable functions and extends it to encompass the application of multiplication operations over encrypted data without the growth of the result vector’s length.

As a future work, we are planning to integrate RSA public-key cryptosystem with our FHE scheme to enhance security features in RSA for the cloud-based applications. Also, we intent to work in the direction of adapting our algorithm for genomic data encryption, taking into considerations results of [6].

REFERENCES